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Abstract. The development of microtips with controlled geometry at the atomic level has 
led to the realisation of electron point and teton tip sources. In this work we study the 
properties of electron emission from microtips of which the size is comparable to the 
electron wavelength imide the tip and for which quantum effects play an important role in 
determining the nature of the emitted beam. Numerical integration of the time-independent 
and time-dependent Schrodinger equation is used to calculate the emitted beam properties 
such as the energy distribution, the angular width, etc for several models. It is shown 
that for some particular geometries it is possible to get a significant reduction of the 
angular width of the emitted beam. We discuss in more detail the electron emission from 
plane emitting sources, and show that they are particulary well suited to focus the emitted 
beam. Such electron sources might be very suitable for performing electron holography 
and interferometry in the reflection mode. Experiments are proposed to test our findings. 

1. Introduction 

Electron emission from very small sources, i.e. of sources which have a size comparable 
to the wavelength of the emitted electrons, is a very interesting problem leading to 
the observation of mesoscopic quantum effects. Recent experimental work on field- 
emission electrons from point sources [l, 21 and teton tips [3] has demonstrated that 
the properties of the emitted beams differ markedly from those of beams emitted by 
conventional sources. The size of these new sources can be made as small as an atom. 

An analysis in terms of electron optics [4, 51 shows that at a distance of a few 
centimetres from the source the electron beam has a transverse (i.e. perpendicular to 
the direction of propagation) coherence length of a few millimetres. This result is of 
much relevance for electron holography [&9] and electron interferometry [ 101 where 
large transverse and longitudinal coherence lengths are needed. 

Another important feature of these emitted beams is that due to the small dimension 
of the source, the applied potential needed to get emission is a few hundreds to 
thousand volts. Consequently these emitted electrons form a low-energy beam which 
could make them suitable to perform interferometry and holography from surfaces with 
three-dimensional atomic resolution. In the case of high-energy electrons (10 keV to 
400 keV) this is not possible because such experiments are carried out in transmission 
mode and, as a direct consequence, the phase of the electrons in the longitudinal 
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direction is averaged over the whole electron path. Therefore the resolution of the 
hologram is good in the transverse direction but very poor in the longitudinal direction 
[8, 9, 101. However, if the electron has a low energy then one can perform holography 
and interferometry in the reflection mode as the electron will penetrate the first few 
layers only and no averaging of the phase of the electrons takes place. 

Another remarkable and important property of these atomic-size sources [ 1-31 is 
that the angular spread of the emitted beam is only of a few degrees (smaller than 
3") so that for emission currents of 10-9-10-6 A, the source can be quite bright even 
without using any lenses, provided the source is stable as a function of time. Previous 
work [4, 51, employing a classical description, has failed to explain the smallness of the 
angular spread. 

Electron emission from small sources can also be obtained by a technique different 
from field emission of small tips, as has recently been demonstrated by experiments on 
2D electron gas (GaAs) systems [ l l ,  121. By fabricating a device having two reservoirs 
connected by a narrow constriction, it was shown that the conductance is quantised, the 
quantisation being a function of the diameter of the constriction. Recent calculations 
for the conductance of electrons moving from one reservoir via a constriction to another 
reservoir seem to be in agreement with experiment [13-191. 

A similar effect was predicted [20] for the conductance in scanning tunnelling 
microscope (STM) experiments [21] when the tip and the sample are in the contact 
regime and the diameter of the contact is varying. As in this particular case the size 
of the contact is of the order of the wavelength of the electrons, quantum interference 
effects show up as oscillations in the conductance versus the diameter of the contact. 
This kind of behaviour appears to have been observed in some STM experiments [22]. 

All these experiments have in common that the electrons are emerging from some 
kind of constriction which is of the order of the electron wavelength. The aim of 
the present paper is to study theoretically various aspects of electron emission from 
small sources and to examine the properties of the emitted electrons beams. To this 
end we employ a semiclassical diffraction approximation (SDA) method, and we solve 
the stationary Schrodinger equation (SSE) and time-dependent Schrodinger equation 
(TDSE). We will present the energy distribution of the emitted electrons and examine 
which geometry is best for having a well focused beam. For the case of the GaAs 
devices our results lead us to propose a technique to focus the current, realisable with 
present day technology and possibly having interesting technological applications. 

The paper is structured as follows. The model as well as the formalisms to solve 
it are presented in $2. Section 3 discusses the calculations and numerical results. In 
$4 new experiments are proposed to check some of the predictions of our calculations. 
The conclusions are summarised in $ 5 .  

2. Model and methods 

The point source emission experiments [l ,  2, 31 are performed on single-crystal (111)- 
oriented tungsten (W) tips. Determining the band structure and wavefunctions near 
the tip of such an object is an extremely difficult, unsolved problem at this moment. In 
order to be able to tackle the problem of point source emission, drastic approximations 
in describing the metal tip have to be made. As a first step we model the emission 
tip by a free-electron gas, thereby making the reasonable assumption that the largest 
contribution to the emitted electrons comes from the s electrons in the metal. Our main 
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objective is to study general features of the effects of the size and geometric shape of 
the source on the angular spread and energy distribution of the emitted electrons. The 
simplest model that captures the basic physics can taken to be two dimensional (2D). In 
figure 1 we present the geometry of the emitting source in real space together with an 
energy diagram. Except in the vicinity of the tip, the surface of the source is assumed 
to be flat. The direction perpendicular (parallel) to the surface (not necessarily the tip 
as it can have curvature) will be called the longitudinal (transverse) direction. 

A1 

Metal 

I I >> Tunnel Vacwm 

Figure 1. Geometry of the emitting source (a) and of the models used in SSE calculations, 
the corresponding energy diagram ( b )  and the geometry of the plane emitting source (c). 

Figure l (a)  shows that the tip is characterised by the width W ,  the length L, the 
angle M and a given geometrical shape, i.e. hyperbolic, elliptical or plane (figure l(c)). 
The metal-vacuum interface consists of a tunnel barrier of a given shape depending on 
the tip geometry and the applied electric field F. Figure l(b) depicts the energy scheme 
corresponding to the geometry of figure l(a). The two parameters characterising the 
free-electron gas are the Fermi energy E ,  (or wavelength 2,) and the work function 
4. Figure l(c) shows a particular case of figure l (a)  that we will call plane emitting 
source (PES). We will pay special attention to this geometry as our calculations show 
that from the point of view of focusing the beam it has remarkable properties. 

Another important reason to study the PES of figure l(c) is that for M 2: 0, 
and small values of the tip width W ,  the presence of well separated energy levels 
in the transverse direction may lead to drastic changes in behaviour. It has been 
shown experimentally and theoretically? that the conductance through a constriction 
connecting two reservoirs at the same Fermi energy is quantised. It is an open question 

t Notice that in the experiments [ l l ,  121 and in the theoretical work [13-191 the constriction connects to 
reservoirs and there is no tunnel barrier. The current distribution has an angular spread of approximately 
60". 
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to what extent the level quantisation will affect the properties of the emitted electron 
waves and if it does so, whether the focusing of the beam is governed by the geometry 
of tip, the tunnel barrier or both. 

Assuming that the electrons inside the metal can be modelled by a free-electron 
gas, the total intensity of emitted electrons can be written as 

I = e dE Ti(E)  
i 

7cf i  

where E is the total electron energy and the summation runs over all angles of incidence 
Bi. The transmission probability Ti(E)  for an angle of incidence Bi can be written as 

where the sum over j runs over all possible outgoing angles O j .  According to (2.1) and 
(2.2) the transmitted intensity can be calculated once all the are known. In the 
following sections we compute the TjS following three different recipes. 

2.1. Semiclassical difraction approximation 

To study the problem of electron emission from small sources, we have to deal 
with a very complicated quantum mechanical problem, which can only be solved by 
application of more or less sophisticated scattering methods. It is of interest to compare 
these scattering calculations with the results of a simple semiclassical model. Although, 
the results of the latter are only qualitative, it will give insight into the importance of 
the different model parameters involved. 

Metal Tunnel barrier Vacuum 

Figure 2. Geometry of the model used in SDA calculations. 

For simplicity we will restrict the discussion to 2D systems having a flat tunnelling 
barrier, i.e. a PES. The geometry of the model we want the study is that of figure 2, for 
a semi-infinite constriction. In this case electron energy is fully quantised and given by 

where qx is the longitudinal wavevector of the electron, n is the quantum number that 
determines the wavevector qn = n x /  W in the transverse direction, m is the effective 
electron mass that will be taken as equal to the electron mass (unless we are discussing 
the 2D electron gas in GaAs devices). 
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In this case (2.1) reads 

where the sum runs over all quantised levels and 

(2.4a) 

(2.4b) 

Note that if only electrons at the Fermi level contribute to the current, (2.4) leads to 
the approximate quantum conductance formula for narrow constrictions 

n=l 

Assuming that there is no diffraction on entering of the barrier, the tunnel probability 
is given by 

where as usual @(x) is the Heaviside step function, and we have adopted the expression 
of transmission through a I D  barrier, which depends on the longitudinal energy 

(2.7) 

only. For simplicity T ( E x )  is taken to be the WKB expression 

T ( E x )  = exp [-4kFs(4 + E ,  - E , ) 3 ' 2 / 3 $ G ]  (2.8) 

where s is the distance a plane wave having wavevector qx = k ,  ( k ,  = 2n/AF = 
m / h )  has to travel through the triangular barrier. Results obtained from an exact 
numerical solution of the 1~ problem merely differ quantitatively. 

One of the most important properties of the electron beams is the energy spread 
of the total current. Within our simple model the longitudinal current (normal energy) 
distribution of the emitted electrons is given by 

whereas the total energy distribution is given by 

(2.9) 

(2.10) 

Although the energy distribution J T ( E )  does not reveal the quantisation effect due 
to the small size of the source, the quantum levels might still have some influence 
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on the angular distribution of the emitted current. To analyse the angular spread of 
the current, we now take into account the scattering of electrons at the end of the 
constriction. As a first approximation to this problem, we will envisage each scattered 
plane wave to be filtered incoherently by the tunnelling barrier, i.e. we will assume that 
the transmittance of a given electron having a total energy E and transverse momentum 
qn = nn/  W is given by 

(2.1 1) 

where f n ( q  sin 0 )  is the diffraction function of the constriction or, in other words, the 
Fourier transform of the slit function. The total current can now be written as 

whereby 

(2.12a) 

(2.12b) 

In this approximation each electron leaving the constriction is scattered, and each of 
the scattered waves goes into the tunnelling barrier, with a momentum qx = qcos8, 
normal to the barrier. Although this is a very rough approximation to the problem, it 
may give us a qualitative picture of the physics involved. 

2.2. Exact solution to the stationary Schrodinger equation 

As pointed out above, the angular spread and energy distribution of the current directly 
follow from the knowledge of the Tj , i (E) .  To calculate Tj , { (E)  we use the ‘matching 
scattering technique’ which has proven itself in STM [23, 241, quantum resistances of 
interfaces [25], and point contacts [13]. It consists of matching the wavefunction in the 
metal, i.e. a linear superposition of plane waves (incident plus reflected waves), with 
the appropriate linear combination of waves in the tunnel barrier and with a linear 
superposition of waves in the vacuum region, taking into account the changes in energy 
due to the applied field. The appropriate wavefunctions for the square tunnel barrier 
are exponentials, whereas for the triangular tunnel barrier they are Airy functions. For 
each electron moving in the direction of the tip, the matching is done at the points 
A,, A, and B,, B, (see figure l ) ,  using a grid of points fine enough that the unitarity 
condition, that is the sum of all transmittivities plus all reflectivities equal to one 
[23-251, is satisfied. Each electron impinging on the surface is described by a plane 
wave having an angle of incidence et. The outgoing, transmitted, waves are also plane 
waves having a scattering angle d j  and a corresponding transmittivity T,,i(E). From 
the latter quantity all interesting properties such as the angular spread and the energy 
distribution follow directly. 

2.3. Exact solution to the time-dependent Schrodinger equation 

The formalisms developed in the previous two sections relied on the basic assumption 
that the waves incident on the barrier can be thought of as being (incoherent combi- 
nations of) plane waves. In this section we concentrate on the situation where that is 
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not the case. The electron wave that is emitted from an atomic-size source may behave 
like a wavepacket, i.e. as a particular linear combination of plane waves. Under such 
circumstances investigation of the emitted-beam properties requires the solution of the 
time-dependent Schrodinger equation (TDSE). 

The basic idea is to solve the TDSE 

(2.13) 

for a quantum particle that moves towards the constriction, tunnels through a potential 
barrier and then proceeds to move in vacuum, under the influence of a slowly varying 
(in space) external field. The geometry of the problem is that of figure 3. The 
Hamiltonian H takes the form 

f i 2  
H = -p2  2m + V(Y) (2.14) 

where V ( r )  = 0 if Y is inside the source (including the constriction), V ( Y )  = CO at the 
source boundary except at the exit plane of the constriction, and for all Y outside the 
source, V ( Y )  is determined by the particular geometry of the tip (i.e. plane triangular, 
elliptical, etc) and field chosen. 

XO XI X l  1 3  0 
(6) Metol Constriction Tunnel barrier Vacuum 

(c) 

+ I  
fF 

x2 xz+s 

Figure 3. Geometry of the models used in TDSE calculations (a), and the energy diagrams 
for the triangular (b)  and rectangular (c) barrier respectively. 

For reasons of computational economy it is necessary to introduce dimensionless 
variables. In all our TDSE calculations the length scale is expressed in units of , I F ,  
wavenumbers are measured in units of k,  = 2n/&,  energies in units of E ,  = f i2kF/2m, 
and times in units of A/EF. The corresponding TDSE and Hamiltonian read 
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and 

(2.15b) 

respectively. 
The computer simulation consists of preparing a wavepacket and letting the 

wavepacket evolve in time according to the TDSE (see figure 3). The TDSE is solved 
numerically by means of an algorithm based on a fourth-order Trotter formula [26]. 
Propagation of the wave is considered entirely in real space, i.e. without involving 
Fourier transformations. The method is unconditionally stable and very efficient, 
allowing the solution of problems sufficiently ‘large’ to be physically meaningful. 

A convenient choice for the initial wavepacket is a Gaussian of width IC moving 
towards the constriction with wavevector q. In the reduced units introduced above, the 
expression for a Gaussian packet, moving in free space, reads 

where d denotes the dimensionality of space (in most of our TDSE calculations d = 2). 
The initial state is then simply @(r - yo, t = 0) whereby ro denotes the position of the 
centre at t = 0. By varying ro or the angle Oi = tan-’(q,/q,) we can simulate different 
situations as far as the approach of the packet to the constriction is concerned. 

After (part of) the wavepacket has travelled through the constriction and has 
tunnelled through the potential barrier (if present), a Fourier transform with respect to 
the spatial coordinates of the transmitted wavepacket @(r,t) is carried out. Here and 
in the following the tilde indicates that the transmitted packet has been separated from 
the rest of the wavefunction. The resulting probability distribution 

(2.17) 

more clearly reveals the main properties of the outgoing wave than the corresponding 
real-space intensity. 

We close this section with some technical remarks about the simulations themselves. 
To approximate the continuum model, use has been made of the standard three- 
and five-point difference approximation to the second derivative with respect to the 
coordinate. The mesh size was chosen such that the length scale ,IF corresponds to 20 
grid points. This ensures that the discretisation itself is sufficiently accurate. The time 
step was chosen such that the results were independent of it, up to four significant 
digits. As the program used [26] was not written for this particular application, memory 
requirements effectively limited the number of lattice points in the simulation box to 
about 415 000. Most of the 2D simulations were carried out using a box of 402, x 131.,. 
Occasionally artefacts due to the relatively short length of the vacuum region (see 
figure 3(a)) in the longitudinal direction have been observed. Work to reduce the 
memory usage of the code by a factor of 2 is in progress. A typical 2D simulation takes 
20 minutes of CPU time on a (2-pipe) CYBER 205 and 7 times longer on an IBM 
309&300E/VF. 
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3. Results 

In general our calculations show that the focusing of the beam is most effective for PES, 
i.e. when the tip resembles a plane source (geometry of figure l(c)). This conclusion 
is drawn from comparison of results for different geometries and is in agreement with 
earlier, semiclassical calculations [ 131 for the hyperboloid, ellipsoid and paraboloid tips 
that showed that the angular spread at the source was approximately 20-30", followed 
by a field focusing in the region of space where the electrons propagate in the applied 
field. This focusing reduces the angular spread by a factor of about 2, for an applied 
field of a few hundred volts. Therefore the angular spread at the screen obtained in [5] 
is 10" to 15", much larger than the % 5" observed experimentally [l-31. 

3.1. S D A  calculations 

Although not a genuine scattering calculation, the SDA helps us to assess the importance 
of the different mechanisms involved. Figure 4 shows the distribution of electrons 
emitted from a tube without a tunnel barrier (or, in other words, for a very large 
field) as obtained in the SDA. The calculations presented are for W = 10, 20, 30, 60 A 
and E,  = 8 eV (A, = 4.4 A). The normalised intensity distribution as well as the 
intensity corresponding to each of the quantum modes of the tube are shown. The 
main conclusion is that the width of the intensity profile (angular spread) is practically 
independent of the width W and approximately 120". Figure 4 clearly shows that 
decreasing the dimension of the tip does not lead to any focusing. 

l " " ' 1 1  I 

4 
1.0 

0.5 

0 30 60 0 30 60 

0 (degl  

Figure 4. Angular distribution of the emitted current I ( 0 )  for the case without a tunnelling 
barrier and for the values of W shown. Also shown are contributions of the first few 
energy levels of the source. SDA calculation. 

In figure 5 we show the energy spectra (see (2.10)) at zero temperature of the 
emitted current for constrictions of different width, followed by a triangular barrier 
with a constant field F = 0.5 V A-' and a Fermi energy and work function of 8 eV 
and 4.5 eV respectively. As it can be seen, the normal energy distribution JN(E,) 
clearly reflects the level quantisation of the source, showing peaks corresponding to 
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1.0 

0.5 

2 0  3 > 

1.0 

0.5 

0 

the energy levels present in the source. However, the total energy distribution J, (E)  
is an almost constant function, independent of the constriction width W ,  i.e. J , (E)  is 
mainly determined by the filtering effect of the tunnelling barrier. The relatively narrow 
peak in the energy spectra comes from the triangular shape of the tunnelling barrier. 
Of course, the width in energy AE (AE N 0.3 eV in the present case) decreases with 
decreasing field. 

I l l J ! I J , J  , I l ) ) J I J '  

IEF - 20 A I E F  - -  10 A JN - 

- 

r 

C I I I I t  I I I I I I  

, , , , , , l l l l  , I !  

1 €6 - 60 A I E F  - -  - 30 A 

- 

, , / , I 1  , , I  

6 7 8 6 I 8 

The results shown in figure 5 suggest that from an energy analysis of the emitted 
current only, experimental observation of level quantisation would be difficult unless 
one is able to discriminate between longitudinal and total energy. 

In figure 6 the current density as a function of the outgoing angle 8, for different 
widths W ,  has been plotted. Also shown in figure 6 are the contributions of the first 
two levels of the source (n = 1,2). From figure 7 it can be seen the angular spread 
of the beam, measured as the half angle at half intensity, is approximately constant 
as a function of the constriction width W ,  this in spite of the fact that the relative 
importance of the various contributions clearly changes with W .  For small W ,  the 
emitted current consists mainly of electrons coming from only one level, yielding a 
wave which, in this case, has an angular spread of A0 N lo" at  the emitting surface. 

For wide constrictions (W large), a different picture emerges. In this case, diffraction 
effects are very weak, and each electron wave having a momentum q has an angular 
width AOq which is very small. However, the current density now is given by the 
non-coherent sum of a large number of electrons coming from different levels. In the 
end, the total current has an angular spread AB N 10" which is much larger than that 
of the individual electron waves. 

The results discussed above can be understood as follows. Because of the filtering 
effect of the triangular barrier, only those electrons having energies close to the Fermi 
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Figure 6. Angular distribution of the emitted current 1(8) for the same parameters as 
in the previous figure. Also shown are curves corresponding to the contribution of the 
first (n = 1) and second (n = 2) energy levels of the source. The angular width at half 
intensity remains approximately constant (z loo) and is independent of the source width 
W ,  whereas the angular width of the contribution of each level becomes smaller as W 
increases. SDA calculation. 

I I I I 
0 25 50 15 

w l a )  

Figure 7. Angular spread of the emitted current, as a function of the source size W ,  for 
applied fields F = 0.25, 0.5 and 1.0 V A-'. Broken line: angular spread obtained by 
incorporating the field reduction for planar geometry [4, 51 for an applied potential of 200 
V. SDA calculation. 

energy E ,  will contribute significantly to the total current. Then, we can write 

where e,,, denotes the angle of the outgoing wave with respect to the longitudinal 
direction. For narrow constrictions (W small), N,,, = 1 and the diffraction function 
/fn(kF sin is a smooth function of the angle e,,,. As the transmission probability 
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decays exponentially, the angular width will be determined by the tunnelling properties 
of the barrier. The angular width, defined as the angle at which the intensity drops by 
a factor of two compared to the intensity in the longitudinal situation, is then obtained 
from the solution of the simple equation 

T ( R2kE ;c2 A,) = 112. 

For large W ,  the diffraction function approaches a delta function 

~ f n ( k F  sin eout) l 2  0~ 6 (e in  - eout) (3.3) 

where Oin is the angle of the incident wave, i.e. tan 8, = n n / q  W .  As before the angular 
spread is controlled by T ( k ,  cos ein) 2: T ( k ,  cos e,,,) N 112 leading to the same angular 
spreading of the electron beam, but as argued before, due to a different physical 
mechanism. 

The fact that in the SDA the waves are being diffracted before they penetrate the 
barrier not only affects the angular spread but also modifies the longitudinal current 
distribution, simply because the tunnelling barrier favours incident waves which are 
normal to the barrier. This focusing effect results in a shift of the energy distribution 
towards higher longitudinal energies E ,  (i.e. towards directions closer to the normal to 
the barrier). 

3.2. S S E  calculations 

All SSE calculations are done for for a geometry in which LY = 45" (see figure l(c)). 
This ensures that the results have converged as a function of the number of plane 
waves employed in the numerical solution. Calculations were performed using the same 
values of E ,  and as in the SDA case. 

0 6 12 0 6 12 

Qou+ or Oi, (deg)  

I b )  

F iv PI 
0 0.5 

0.25 

Figure 8. Angular distribution of electrons emitted from a PES: (a )  W = 21F, (b) W = 41F 
and F = 0.25 V A-' for both cases. See text for more explanation about I(Oout) and I ( & ) .  
Broken curve: angular spread obtained by incorporating the field reduction, adopting the 
same parameters as in the previous figure. Also shown (c) is the energy distribution of the 
emitted wave for F = 0.25 and 0.5 V A-' respectively. SSE calculation. 
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In concert with the SDA results we find an angular spread of approximately 60" 
when no tunnel barrier is present, a result which is independent of the value of W 
for the range of parameters of interest and in agreement with the TDSE calculation 
(see next section). SSE calculations for the PES geometries (figure 8) and the SDA 
results are comparable. The angular spread A0  N 9" and A0 = 11" for applied fields 
of F = 0.25 V A-' and F = 0.5 V A-' respectively. When we take instead of a 
triangular barrier, a square barrier having the same value of 4 and a thickness of 6 A, 
the angular spread increases. The SSE calculations also show that the angular spread 
is practically independent of the width W of the emitting tip. Figure 8(c) shows the 
energy distribution of the current for the two values of P mentioned previously. It is 
seen that the smaller the field is, the smaller is the energy spread. The angular spread 
of the beam for the elliptical tip and a field of F = 0.5 V A-' at the apex of the tip is 
about 25" showing that the beam is focused very little by the barrier. Also in this case 
the angular spread is independent of W (see figure 9). 

*O t 

_ _ _ _  * - - - C L - - - & - - - -  

!lOL 0 2 W/hF 4 - 

Figure 9. Angular spread, obtained from plots shown in the previous figure but now as a 
function of W .  Bars: elliptical tip and square barrier; open squares: PES, square barrier 
(4 = 4.5 eV, s = 5 A); crosses: PES, triangular barrier, F = 0.5 V A-'; open circles: PES, 
triangular barrier, F = 0.25 V kl; broken line: PES, triangular barrier, F = 0.5 V A-' 
incorporating the same field reduction as in figure 7. SSE calculation. 

A physical interpretation for this behaviour can be given by noting that for the 
curved geometries the equipotential lines follow the shape of the tip. We find that in 
order to focus the emitted electrons, the geometry of the tunnel barrier has to satisfy 

or, equivalently 

where s, and s2 are the distances between the points 0-P, and 0-P,, P, and P, being 
a Fermi wavelength ,IF apart (see figure 1). Notice that the points P, and P, are on the 
equipotential line to obtain a given current. Equation (3.4) is easy to interpret from 
the physical point of view. It implies that the thickness of the tunnel barrier has to be 
increased by 4 - l I 2  for two points of the equipotential surface separated by a distance 
2,. For realistic values of E,, 4 and F ,  the PES satisfies the criterion discussed above 
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and nicely focuses the emitted electrons. For the elliptical tip, condition (3.4) is not 
satisfied and therefore the electrons spread over a large angle. 

An interesting observation is that if we plot the current summed over all outgoing 
angles as a function of the incoming angle (i.e. Z(Oin) = I(Oin,Oout)) or the 
current summed over all ingoing angles as a function of the outgoing angle (i.e. 
I(Oout) = Coin I(Oin, Oout)) we find the same result. This is illustrated in figure 8 where 
the bars indicate the transmitted intensity as a function of the incident angle. We 
believe that this result holds to a good approximation in the case where the incident 
wave is a plane wave. 

A summary of the angular spreads obtained from SSE calculations for different 
geometries and tunnel barriers is presented in figure 9. Our conclusion is that of all 
the geometries considered, the PES yields the best focusing. Equivalently one might 
say that in the direction normal to the emitting plane, the tunnel distance is shorter. 
Consequently a smaller angle of incidence yields a larger transmittivity. Note that as 
the barrier is a very effective filter for low-energy electrons (lower part of figure 8), 
only the electrons with energies between E ,  and E ,  - AE contribute significantly to 
the current. The angular width for PES 

A0 = COS-'([(E, - 1: (AE/EF)1'2 (3.5) 

for AE = 0.3eV is in good agreement with the SSE calculations. 
We emphasise that our SSE calculations are in excellent agreement with the SDA 

results, showing that the latter is an excellent approximation. The picture that emerges 
is then that the waves are first diffracted at the end of the constriction representing 
the tip, without focusing effects due to quantised levels in the constriction, and are 
subsequently filtered in energy and direction by the tunnel barrier. This filtering is the 
most effective for triangular barriers and especially for the PES. 

3.3. TDSE calculations 

Figures 10 and 11 depict typical simulation results for I@(r,t)I2 and 1@(q,t)12 for the 
case without and with a plane triangular barrier with 4 = O S E ,  and ~ 3 - ~ 2  = lOL, (see 
figure 3) respectively. In the absence of a potential (figure 10) the width of 1@(q, t)I2 as 
a function of q,, i.e. in the direction perpendicular to the direction of propagation qx ,  
is rather large indicating that there is a lot of diffraction and that the angular spread 
Ad is large. In the case shown, the transmitted intensity T(Oi = 0') N 0.6, assuming the 
probability of the incident wave is normalised to one, as usual. Turning on the potential 
leads to significant changes in /@(q,  t)I2 as is most evident by comparing figures 10 
and 11. The width in qy  is much smaller now. As expected on general grounds, the 
transmitted intensity, which is about 3 x in this particular case, is much lower 
than in the case without the potential. 

Simulation data for /@(q,t)I2 for the same plane triangular barrier as in figure 11, 
but for a constriction of L = &/2, are depicted in figure 12. The shape and the width 
of 1@(q,t)12 in both directions is within numerical accuracy the same as in the former 
case, as is the transmittivity. This is a direct consequence of working with idealised, 
uniform (in the y direction) potentials. From figure 3 it follows that the wavepacket 
will hit the potential barrier at an earlier instant if the constriction is made shorter 
(xl is kept fixed in all our simulations) so that the emitted wave will leave the barrier 
earlier too. Hence the shorter the constriction is, the longer the emitted wave will be 
subject to the accelerating field. From the real-space pictures it seems reasonable to 
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16) 
Real space 

Figure 10. (a) Probability distribution of the reflected wavepacket. The constriction has a 
length L = 51F and a width W = 21+, and the width of the initial Gaussian wavepacket 
K = 1.5 (in units of IF). ( b )  Probability distribution of the transmitted wavepacket. (c) 
Intensity in q-space, obtained by Fourier transforming the outgoing wavepacket. TDSE 
calculation. 

Figure 11. (a) ,  (b)  and (c) Same as in the previous figure except that in addition to the 
constriction a plane triangular barrier is present. 

assume that for the times t considered, the transmitted wavepacket can be looked upon 
as being separated from the rest of the wave and moving in a constant external field. 
Then a rigorous calculation yields 

showing that the only effect of the field E ,  is to displace lQ(q, t)I2 by an amount E,7/EF 
along the qx direction. Thus, under the hypothesis that the transmitted packet is a 
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separate entity, acceleration due to the constant external field does not alter the shape 
of I@(% t)I2 

Fourier space 
&m=Oo, TIBi,l z 3 6 r  10.' 

Figure 12. The Fourier-transformed transmitted Figure 13. The Fourier-transformed transmitted 
wave 1@(q,t)12 emerging from a constriction of wave I@(q,t)/* emitted by an elliptically shaped tip. 
L = ip/2 followed by a plane triangular barrier. 
TDSE calculation. 

Constriction: L = J.F. TDSE calculation. 

Extensive calculations have shown that changing the length L of the constriction 
has no significant effect on /@(q,t)I2 in the case where a tunnel barrier is present. 
Without potential the diffracted wave is of course changing quantitatively as L is 
varied (&/2 5 L 5 5 2 ,  in our simulations) but, most importantly, the width of the 
profile in the q, direction is only weakly depending on L. However, in the case when 
a tunnel barrier is present, our results do not reveal any dependence of 1@(q,t)I2 on 
the length L. Summarising, without a potential barrier the scattering is sensitive to the 
length of the constriction whereas in the case with a triangular barrier no such effects 
are seen. 

To illustrate that the PES is a very efficient filter that focuses the beam in the 
longitudinal direction, figure 13 shows a typical result for 1@(q, t)I2 for the case of an 
elliptical tip (W = 2&., c = 3&, see figure 3). Although the potential was chosen 
such that the distance through the barrier, for an incident plane wave of energy E,, is 
identical to that of the PES (z 1.67iF), the transmittivity of the former is more than 
a factor of two larger than that of the latter. From figure 13 it is clear that the extra 
intensity is not only going into the longitudinal components of the packet but adds 
considerably to those with q, # 0 as well. We conclude from this that the elliptical 
tip does not focus as well as the PES, a conclusion we believe holds for tips of other 
curvature too. 

All these conclusions about the behaviour of l@(q, t)12 are drawn from calculations 
in which the initial packet is symmetric with respect to the axis passing through the 
centre of the constriction. To assess the quality of the tunnelling barrier as a focusing 
device it is necessary to investigate what happens for the case of non-normal incidence, 
i.e. at t = 0, 8, # 0 and yo # Y / 2 .  In general 1@(q, t)I2 is asymmetric in q,, the shift of 
the maximum of /@(q,t)I2 with respect to q, = 0 being much smaller than the width 
of /@(q,t)I2 in the q, direction. Note the big difference between the peak positions 
of 1@(q,t)I2 for the case without (figure 14(c)) and with a plane triangular barrier 
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(figure 15(c)). It is obvious that the plane triangular barrier has very good focusing 
properties. In concert with our earlier finding for the case of normal incidence, our 
simulation results (not shown) reveal that the elliptically shaped tip does not perform 
as well. 

Figure 14. Intensities in real (a) and ( b )  and Fourier space (c) for non-normal incidence. 
The constriction has a length L = 5 i F  and a width W = 21F, and the width of the initial 
Gaussian wavepacket K = 1.5 (in units of LF). The angle of incidence with respect to 
the direction normal to the surface is 14". No potential barrier is present. The thick 
line indicates the qy component at which the Fourier-transformed wavefunction reaches its 
maximum. TDSE calculation. 

~ 

Ref lec ted  wave I C I I  ~ 

Transmitted wnve 
0,,:1k0, T10, ,1=26r10~'  

, Transmitted wave 
0,=14", TIB,, I = 2 6  ~10.' 

i 

Figure 15. (a), ( b )  and (c) Same as in the previous figure except that in addition to the 
constricrion a plane triangular barrier is present. 

Our PES simulation data yield angular spread A0 1: 5". Converting the model 
parameters used in the TDSE calculations gives a field of F = 0.55 eV A-'. Comparison 
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with the SDA (figure 7 )  and SSE (figure 9) results shows that the TDSE approach predicts 
a smaller angular spread, i.e. focusing is better than expected on the basis of SDA and 
SSE calculations. Notice that in this case there is an extra field focusing the emitted 
electrons due to the potential used (see figure 3). 

Anticipating the optical transmission experiments to be proposed in 6 4, we also 
performed a set of simulations for the case of a constriction followed by a rectangular 
barrier (see figure 3 ( c ) ) .  The distance d was chosen such that a wave, having incident 
energy E,, sees a barrier of the same thickness as it would have seen if a triangular 
barrier were present. Again it is important to examine the focusing properties by 
sending to the barrier wavepackets with different angles of incidence. One of the 
resulting plots of l@(q, t)I2 is given in figure 16. In contrast to the plane triangular- 
barrier case, @(q, t)I2 has much more structure now. Two peaks, one with q, < 0 and 
one with q, > 0, are clearly visible. On the other hand, the transmittivity relative to the 
transmittivity for normal incidence is about a factor of two less than for the triangular 
barrier. Thus, although for non-normal incidence (ei # 0), 1@(q, t)12 has more structure 
than in the case of the triangular barrier, the total transmitted intensity is much less. 

Figure 16. The Fourier-transformed transmitted wave 1@(q, t ) I2  of a source consisting of 
a constriction (L = 5 ° F )  followed by a plane rectangular barrier of W = 1 . 6 6 7 1 ~  for a 
non-normal incident wavepacket. TDSE calculation. 

We can understand this behaviour by means of SDA-like arguments, by considering 
one of the plane waves contributing to the incident wavepacket. Assume it has an 
energy E = EF(1 -E), E Q 1. The WKB expressions for the transmittivity, normalised to 
the transmittivity at E = E,, read 

and 

(3.7a) 

(3.7b) 

where the subscripts 'S' and 'T' stand for square and triangular barriers respectively. 
From (3.7) it follows immediately that the triangular barrier is a much more effective 
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filter than the square barrier for plane waves with E e E,. It should be stressed that 
from formulae (3.5) and (3.7a, b) the angular spread A8 is approximately ( 2 ~ $ ' / ~ / E , s ) ' / ~  
for a square barrier and (g5' /2/E,s) ' /2  for a triangular one. Also at constant intensity 
the spread goes as C$'l2 in both cases. Therefore the lower the tunnel barrier height, 
the more focused the beam is, provided that the WKB approximation can be applied. 

As pointed out above, 2D TDSE simulations of this kind require a lot of computer 
memory as we need to store the wavefunction and some intermediate data for all lattice 
points. From a physical point of view this constraint forces us to choose relatively 
small values of the width K ( K  4 2 in our 2D simulations) of the initial Gaussian packet. 
In practice 1 I K I 2, yielding an energy spread AE/'EF N 10%. This is far away from 
the plane-wave regime ( K  -+ 00). 

To investigate the effect of the width K on the properties of the transmitted wave, 
we have carried out very accurate simulations for ID systems, for K 5 4 0 .  As a check 
a Gaussian packet having K = 40 incident on a rectangular barrier of height 1.5EF 
and width d = 1.667 was followed in time and analysed very carefully. The spread 
in energy of the t = 0 Gaussian packet AE = 0.0056EF, yielding a transmittivity 
T = 0.155 x whereas the exact result for an incident plane wave of energy E = E ,  
is T = 0.132 x loe5. Thus, in spite of the fact that we are dealing with a rather large 
simulation box (83011,), on a quantitative level we are not yet close to the idealised 
plane-wave regime. However, detailed examination of the simulation data reveals 
that the functional dependence of a transmittivity for finite K as a function of E fits 
extremely well to the well known expression for the transmission coefficient of a plane 
wave. 

A direct consequence of working with wavepackets instead of plane waves is that 
each of the plane-wave constituents of the wavepacket tunnels through the potential 
barrier in a different manner. As a result, the mean energy and the spread in energy 
of the transmitted packet will be a function of the width K of the initial packet. To 
investigate this aspect in more detail we have carried out simulations for incident 
Gaussian packets of various mean energies E = ( y ( t  = O)IHIy(t = 0)), and widths 
K = 4, 20, 40 yielding energy spreads of AE/EF N 5, 1, and 0.5% respectively. 
The probability amplitudes of the transmitted Fourier-transformed wavefunction were 
added, taking into account the corresponding transmittivities, and plotted as a function 
of E/E,.  The results are summarised in figure 17. Most striking is that the position 
of the maximum of the total transmittivity increases as the width K decreases. For a 
wavepacket width of 0.05EF the peak position shifts by about 5%. The reason for this 
behaviour is readily traced back to the tunnel characteristics of the barrier; the larger 
the energy of the plane-wave constituent, the larger its transmittivity. 

4. Proposals for experiments 

Our calculations suggest a set of experiments that could be performed to gain a 
better understanding of the focusing and coherence properties of the emitted beams. 
Such experiments might be done not only by using field emission from tips but also 
by other, physically very similar, techniques. For instance polarised light impinging 
on small orifices (pin holes) covered by a thin metal layer (playing the role of the 
tunnel barrier for electrons), or experiments such as those performed in 2D GaAs gas 
[ l l ,  121 but having in addition a thin GaAlAs layer that will act as a tunnel barrier. 
We also discuss in more detail the consequences of the energy distribution of the 
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E/E, 

Figure 17. Normalised energy distribution of the total transmission probability, of a ID 

triangular barrier of height 1 . 5 E ~  and base S L F .  Full curve: A E / E F  = 5.6%; broken curve: 
A E / E F  = 1.1%; dotted curve: normalised transmission probability for a Gaussian packet 
having energy EF and A E / E F  = 0.56%. TDSE calculation. 

emitted electrons and how variations in it could be detected by increasing the applied 
potentiel or equivalently the emitted current. At the end some suggestions are made 
for performing electron interferometry and holography in the reflection mode 

4.1.  Energy distribution of the emitted electrons 

In figure 5 we have presented the energy distribution of the emitted electrons at zero 
temperature, taking into account electrons very close to the Fermi surface only. For 
large currents this description is incomplete because electrons of energy slightly above 
or below the Fermi level will feel a different tunnel barrier and will contribute to the 
electron current also. This effect may increase to some extent the width of the energy 
distribution. This is illustrated in figure 18 where we present SDA calculations for the 
energy distribution for several temperatures of the emitting tip. However, increasing 
the temperature is not the only effect that has to be taken into account because in the 
SDA the electrons are still treated as monoenergetic plane waves, having energies at the 
Fermi level distributed according to the Fermi distribution of the metal. Increasing the 
current by increasing the applied field, the electrons in the metal will also experience 
more inelastic scattering and electron-electron interactions will contribute to the self- 
energy as well. These effects can be accounted for by describing an electron as a 
wavepacket with a certain energy width, as is done in TDSE calculations. 

The results of our calculations, some of which are presented in figure 17, show that 
not only does the width of the distribution increase with the width of the incident wave 
but also that there is a shift of the peak position towards an energy above the Fermi 
level. Our calculations yield positive shifts by up to 10% of the Fermi energy. In other 
words the mean energy of the emitted electrons is larger than the Fermi energy. This 
is because electrons with energy above the Fermi level have a larger tunnel probability. 
We propose to perform an experiment in which the emitted current is steadily increased 
to obtain sufficiently large currents and to study the shift of the peak position in the 
energy distribution of the emitted electrons. 

4.2. ZD GaAs electron gas 
As mentioned in the introduction, recent experiments on the 2D GaAs electron gas 
[ l l ,  121 having high mobility (or equivalently a large mean free path) have shown 
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Figure 18. Energy spread as a function of temperature for a field F = 0.5 V A-'. SDA 

calculation. 

that the conductance through constrictions of width W and length L (see figure 1 
and figure 19(a)) is quantised as a function of W ,  the quantum of conductance being 
Go = l/R,,, where R,, = h/2e2 = 129000. Each time that W increases by half a Fermi 
wavelength the conductance increases by Go. In a first approximation (i.e. not self- 
consistently) this conductance has also been calculated and shows the same quantisation 
behaviour [13-181. The same phenomena were suggested to occur in STM [20] and may 
have been observed in STM experiments [22]. However, in all these cases, on entering 
reservoir 2, the current density of the electrons going through the constriction is spread 
over approximately 60", as shown in figure 4. The electron current is not focused. 

Figure 19. Geometry of the proposed GaAs device (a) and the optical experiment ( b ) .  

We believe that for technological applications it might be of interest to construct 
devices having focused electron currents so that by deflecting the current by a magnetic 
field one could direct the electrons to several different gates. To test these ideas we 
propose the following experiment. As shown in figure 19(a) two reservoirs having Fermi 
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wavelengths A, and A, are connected by a constriction, created by applying a positive 
potential V in the shaded area I of length L [ l l ,  121. This constriction quantises 
the conductance as a function of W but the current is not focused. We suggest two 
mechanisms to focus the current. One is to deposit a region I1 (see figure 19(a)) of 
GaAlAs having a thickness s and with a tunnel barrier height 4. Clearly this is nothing 
but the tunnel barrier of the field emission model discussed above and consequently 
focusing of the electrons from 60" to 10" will also occur, although it will be only 
partially because of the rectangular tunnel barrier. However, in the field emission case 
there is an additional mechanism to focus the electrons, namely the external applied 
field. This could be mimicked in the GaAs case too by applying a potential between 
reservoirs 1 and 2. 

In field emission the beam propagates in vacuum but now the current propagates 
in a GaAs crystal. Another way to generate the applied field is to increase the doping 
in reservoir 2, i.e. by increasing the Fermi energy or reducing A,, It is worth noting 
that in the presence of a tunnel barrier in a device like that of figure 19(a), there is 
no quantisation of the conductance because only the lower bands of the constriction 
contribute to the current, whereas the other bands do not add significantly to the total 
current (see figure 5 for the field emission case). In figure 20 we present the outcome of 
some model calculations for the system described above. For curve A we have chosen 
2 ,  = 2, = 335 A, a Fermi energy E ,  = 20 meV, 4 = 20 meV corresponding to a tunnel 
distance of 53 A, an Al,Ga,-,As layer of thickness s = 371 A and x = 0.06. We 
have taken into account that the effective mass of the electron is that in GaAs, equal 
to 0.067, the bare electron mass. Curve B is obtained from a similar calculation but 
instead of E., = 335 A, we have taken A, = 167 A. For comparison the results for 4 = 0, 
i.e. without a tunnel barrier, are also shown. To illustrate the effect of the thickness of 
the tunnel barrier, figure 20 curve C depicts the results of a calculation for the same 
parameters as for curve B but for a thicker barrier (530 A) which is approximately 1.5 
times the wavelength of the electrons in reservoir 1. 

eout (degl 

Figure 20. Angular distribution for the Al,Gal-,As device depicted in figure 19(a), in the 
case without a barrier; (A) for i.1 = ,I2 = 335 A; (B) for ,I1 = 335 A and 12 = 167 A; (C) 
for the same wavelengths as in (B) but for a thicker barrier. 

Our calculations clearly demonstrate that the method we propose is quite efficient 
in focusing the beam. This focusing effect should be stronger the lower the tunnel 
barrier is, the thicker the GaAlAs deposit is and the smaller A2 is. Having obtained 
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a focused electron beam, it should be possible to apply a magnetic field [28], and to 
direct the beam to specific areas in reservoir 2. 

4.3. Light experiments 

Scattering of polarised light passing through a small hole is also an appealing and 
very direct way to confront with experiments our ideas on the focusing of waves. In 
particular, the optical analogue of the point source may also be more convenient to 
study as an incident, coherent and monoenergetic beam of photons can be produced 
by a laser. Compared to electron waves, photons have the additional advantage that 
the experiment can be done with waves of well defined energy and angle of incidence 
whereas for electrons, one has to take into account contributions to the current of each 
electron at the Fermi level. Thus the light experiment would provide direct information 
about the diffraction properties for each angle of incidence separately. 

Schematically this experiment is depicted in figure 19(b). Now the wavelengths of 
the incident (A1) and transmitted (Ib2) light are of course equal to the wavelength of 
light in vacuum. Region I is a metal pin hole having a diameter W N A, thickness L 
and a dielectric constant e l .  Such pin holes are commercially available. Region I1 is 
another metal sheet of thickness s and dielectric constant e2,  put on top of the pin 
hole. The choice of the two metals I and I1 should be such that their dielectric constant 
has a small imaginary part to avoid absorption of radiation by inelastic processes. On 
the other hand the real part of the dielectric constant should be large and negative so 
that tunnelling is effective. A good candidate might be Ag [29, 301, but care should 
be taken to avoid surface plasmon effects by properly choosing the angle of incidence 
and wavelength of the light. The roughness of the surface should be kept as small 
as possible in order to miminise the coupling of light with surface plasmons. In this 
respect Ag is very convenient because after annealing it is very flat. 

Some model calculations have been performed for incident light of A = 5145 A, 
corresponding to a green Ar line. Following the suggestion made above, the material 
chosen for both regions I and I1 is Ag, so that for A = 5145 A the experimental value 
for the dielectric function e l  = e2 = -11 + 0.33i at 1 = 5145A [29]. The thickness L of 
the pin hole should be large enough that the amount of light not going through the 
hole is negligible. Note that in this model calculation, an Ag pin hole was taken but 
it is clear that for the actual experiment this is not essential. On the other hand, the 
thickness s of the region TI should not be too large, as there should be a detectable 
amount of light in region 11. The fact that one can detect very weak light intensities 
might be an additional advantage of working with light instead of electrons. 

Some results for the diffraction pattern of the transmitted light are presented in 
figure 21 for incident angles of 0 and 28". The data are normalised with respect to 
the value at  the specular angle and should be compared to the diffraction patterns 
for s = 0, i.e. the case without a tunnel barrier. It is clearly seen that the angular 
distribution becomes narrower when the tunnel barrier is present. In addition, for s > 0 
the diffraction profile is highly asymmetric. 

4.4. Interferometry and holography in the rejection mode 

It is clear that important applications of focused and coherent beams are to be found in 
electron microscopy at low energies. As discussed in earlier work [4, 51 and in this work, 
electron beams produced by atomic-size sources have transverse coherent lengths of the 
order of millimetres to a centimetre. This is approximately three orders of magnitude 



9954 N Garcia et a1 

-30 -20 -10 0 10 20 30 

eout (deg) 

Figure 21. Calculated angular distribution for the light experiment of which the geometry 
is shown in figure 19(b). Curve A is the result for s N 300 A. 

larger that those obtained with normal field-emission tips [4, 5, 81. Estimating the 
brightness of the beams produced by these small sources one finds [4] that it can be 
made lo4 to lo6 larger than for usual field-emission sources. This implies an increase 
in the number of detectable interference fringes of lo2 to lo3 [8-lo]. In addition the 
energy of these beams is in the range of 100 to 1000 V. 

Given these characteristics, such electron sources should be more than adequate for 
performing electron interferometry and holography in the reflection mode. Interferom- 
etry and holography as proposed by Gabor [6, 71 has been performed with electrons 
in the region of 100 000 V working in the transmission mode [8, 91, i.e. with a thin 
sample and the electrons that go through it. As the electron sees a rapidly changing 
environment when it passes through the sample, information contained in the elec- 
tron wavefunction phase is averaged out and is therefore partially lost. Consequently 
holograms obtained by this technique have high (atomic) resolution in the direction 
transverse to the beam but very poor resolution, from the atomic point of view, in the 
longitudinal direction [8, 91. The electrons beams generated by very small sources have 
much smaller energies and therefore their penetration depth in the sample is smaller. 
We propose to perform interferometry and holography in the reflection mode because 
then the electron will not penetrate into the sample as much and consequently the av- 
eraging process may be negligible. Given the high degree of brightness and coherence 
of the beam it might be possible to achieve three-dimensional atomic resolution [4]. 
Similar results could be obtained qualitatively from low-energy electron diffraction, by 
considering the diffraction intensity of a hologram from two different electron paths. 
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5. Conclusions 

Our calculations have shown very clearly that of all geometries studied, the combination 
of a plane emitting surface and a triangular barrier yields the best focusing of the 
emitted electron beam. For a work function 4 = 4.5 eV, and currents of lo6 to 
lo9 A cm-* corresponding to fields of 0.5 and 1 V A-', the angular spread at the 
screen is estimated to be 2 and 3" respectively. Of course for a given current the 
focusing will be better if q5 is smaller. If the equipotential line for E ,  at the apex of 
the tip is flat, the emitted beam will be focused according to our calculations. We 
conjecture that this is what causes the focusing of electrons emitted from microtips. The 
presence of quantised levels in the tip does not seem to affect the focusing properties. 
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